

# ReNew100 Demonstrate Resilient Power System Operation with 100% Non-Synchronous Generation Ulrich Muenz Siemens Corporate Technology, Princeton, NJ

Restricted © Siemens

siemens.com

# 100% renewable, non-synchronous generation poses big challenges to power system operation and planning





### ReNew100: Demonstrate N-1 Secure Power System Operation with

**SIEMENS** 

Ingenuity for life



Operator

**EMS** 



Minimize required grid-forming ratio



Power System



Model Calibration using HECO PMU data













# Modification of Hawai'i Island's power system leads to a power system with various 100% non-synchronous generation cases





| Generation          | Today | Planned | Extension | Total |  |
|---------------------|-------|---------|-----------|-------|--|
| Wind                | 30MW  |         | 20MW      | 50MW  |  |
| Centralized Solar   |       | 2x30MW  | 2x30MW    | 120MW |  |
| Distributed Solar   | 70MW  |         | 40MW      | 110MW |  |
| Centralized Battery |       | 2x30MW  | 2x30MW    | 120MW |  |
| Distributed Battery |       |         | 40MW      | 40MW  |  |
| Synchr. Renewable   | 90MW  |         |           | 90MW  |  |
| Conventional        | 160MW |         |           | 160MW |  |

| Noon                             |                     | Evening |                | Night |         |      |      |
|----------------------------------|---------------------|---------|----------------|-------|---------|------|------|
| Load                             | 160MW               |         | 180MW          |       | 90MW    |      |      |
| 100%<br>non-<br>sync<br>dispatch | Wind 50 -120 PV 230 | 160     | 130<br>Wind 50 | 180   | Wind 50 | 40   | 90   |
|                                  | Gen Batt            | Load    | Gen Batt       | Load  | Gen     | Batt | Load |

### We develop consistent models across different simulation tools





#### **Project status**

- 6 area, 10 generator model implemented
- extension to full model on-going

#### **Compared models**

- PSS®E (RMS)
- PSS®Sincal (RMS)
- PSS®Sincal (EMT)
- SimScape SimPower Systems (EMT)

### Key observations from 6a/10g model

- Very good match of key dynamics between all models in both RMS and FMT
  - Eigenmodes
  - Overshoot
- 60 Hz oscillation occurs in EMT simulation due to DC part of the stator dynamics.

February 2020

**SIEMENS** 

Ingenuity for life



Operator Support System

EMS



Minimize required grid-forming ratio



















### We calibrate generator models using PMU data from HELCO



### Challenge

- Accurate model required for Dynamic Security
   Assessment and Optimization
- Planning models used for generator plants may have incorrect parameters

#### **Our Approach**

- Calibrate power system model using PMU data from HELCO
- Generator model calibration based on Ensemble Kalman Filter (EnKF)
- PMU measurements will be used as event playback



### **SIEMENS**

Ingenuity for life



Operator Support System

EMS

SIGUARD
Dynamic Security Assessment

Spectrum Power EMS
State Estimator AGC

Minimize required grid-forming ratio

#### Consistent modeling across different tools Linear **PSS®E** Sincal Systems model SIGUARD Dyn. Sec. **OPAL-RT** Optimiz. POWR 2171-SPS-EMT · 2171-Sincal-EMT 2171-Sincal-RMS 2171-PSSE-RMS 5404-SPS-EMT 5404-Sincal-EMT 5404-Sincal-RMS 5404-PSSE-RMS 5501-SPS-EMT 5501-Sincal-EMT 5501-Sincal-RMS 5501-PSSE-RMS 5900-1-SPS-FMT 5900-1-Sincal-EMT 5900-1-Sincal-RMS 8 9

















# We develop fast optimization algorithms for oscillation and overshoot damping





### **Project status**

- Development of linear model started
- Optimization will developed starting from prior project's work





NSGB: Naval Station Guantanamo Bay



### Detailed power plant models are optimized

**SIEMENS** 

Ingenuity for life

❖ 19 states per generator

10 tunable controller parameters per generator



# Application example shows significant increase of power oscillation damping for IEEE39 benchmark model



Ingenuity for life



with component models from<sup>[4,5]</sup> and PSS from<sup>[2]</sup>

Optimization Problem Characterization

216 states

add'I HVDC line

add'I HVDC line



[2] P. Kundhur, Power System Stability and Control, McGraw-Hill, 1993.

[3] A. Moeini, I. Kamwa, P. Brunelle, G. Sybille, "Open Data IEEE Test Systems Implemented in SimpowerSystems for Education and Research in Power Grid Dynamics and Control," Power Engineering Conference (UPEC), 2015 50th International Universities, 1-4 Sept. 2015, Staffordshire University, UK. (https://www.mathworks.com/matlabcentral/fileexchange/54771-10-machine-new-england-power-system-ieee-benchmark)

[4] IEEE committee report, "Dynamic models for steam and hydro turbines in power system studies," IEEE Transactions on Power Apparatus and Systems, Vol. PAS-92, No. 6, 1973, pp. 1904-1915. [5] "Recommended Practice for Excitation System Models for Power System Stability Studies." IEEE® Standard 421.5-1992, August, 1992.

### **SIEMENS**

Ingenuity for life



Operator Support System

EMS

SIGUARD
Dynamic Security Assessment

Spectrum Power EMS
State Estimator

AGC



#### Consistent modeling across different tools Linear **PSS®E** Systems Sincal model SIGUARD Dyn. Sec. **OPAL-RT** Optimiz. POWR 2171-SPS-EMT · 2171-Sincal-EMT 2171-Sincal-RMS 2171-PSSE-RMS 5404-SPS-EMT 5404-Sincal-EMT 5404-Sincal-RMS 5404-PSSE-RMS 5501-SPS-EMT 5501-Sincal-EMT 5501-Sincal-RMS 5501-PSSE-RMS 5900-1-SPS-FMT 5900-1-Sincal-EMT 5900-1-Sincal-RMS 8 9

















# We benchmark grid-forming and grid-supporting inverter control structures to minimize grid-forming to grid-supporting ratio



### Challenge

 Minimize required ratio between grid-forming inverters and gridfollowing inverter for N-1 secure operation

### **Our Approach**

- Benchmark grid-forming and grid-following inverter controllers
- Validate N-1 secure operation in PSS®Sincal

### **Project status**

 Development of PSS®Sincal model started

#### **Direct Voltage Control**



#### **Voltage and Current controls**



### Voltage and Current control with voltage feed-forward



### **SIEMENS**

Ingenuity for life



Operator Support System

EMS























### **Contact page**





#### **Ulrich Muenz**

Head of Research Group Autonomous Systems and Control / US / CT RDA FOA ASY-US

755 College Road East Princeton, NJ 08540

USA

Mobile: +1 609 216 0170

E-mail: <u>ulrich.muenz@siemens.com</u>

siemens.com